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ABSTRACT 2. PROBLEM SETUP

Lett = 1,2, ... indexthe time-periods (time-points) for which
The release of hazardous materials into the atmosphere c@ wish to update our model and let:
have a tremendous impact on dense populations. We propose ) ) o
an atmospheric event reconstruction framework that csuple ¢ = the end time-point of theth characterization.
observed data and predictive computer-intensive dispersi 7, = (7,—1, 7¢), thet-th time interval.

models via Bayesian methodology. Due to the complexity oﬁ . . . i . .
the model framework, a sampling-based approach is taken f |he time-pointyr; } can either be fixed in advance or, what s

posterior inference that combines Markov chain Monte carld"'® likely the case, dynamically chosen based on the avail-

(MCMC) and sequential Monte Carlo (SMC) strategies. ability and coverage of the incoming data.
The unknown atmospheric release can be due to one or

more sources. Let

0., = collection of parameters characterizing thth
1. INTRODUCTION source in7, and letd; = {6, ;}.

For example, a simple characterization of a single expéesiv
Atmospheric event reconstruction refers to the process-of etype of a source is given by its location)( time of explo-
timating the characteristics of an unknown release of a themsion ('), and the amount of material being releasex);© =
cal or biological agentinto the atmosphere (e.g., when?ehe {x, T, m}. Other examples include a source with a fixed lo-
how much?) and predicting its current and future dispersiorcation but a time-dependent release rate (e.g., a “leakd) an
The first part is accomplished by coupling together an atmoa source with both time-dependent release location and rate
spheric dispersion model and (relatively) sparse senstar-d (i.e., a moving source).
to extract information about the unknown release input pa- The impact of the release can be observed in various ways,
rameters of the dispersion model. Given a characterizatiofor example by a network of sensor instruments. In that case,
of the release, the resulting dispersion can be predicted, p let:
viding valuable information for consequence management. A ) )
dynamic atmospheric event reconstruction refersto aeanst S/ = the location of the/-th sensor.
revision of our state-of-knowledge of the unknown release, c; . = thek-th average concentration reported from the
and its dispersion, as the event unfolds (in real or nedr-rea  j-th sensor.

time) and more data becomes available. T = (15, 75,) = the time interval in which; ; was

A team of scientists at Lawrence Livermore National Lab- measured over.
oratqry is |mplem§ntlng a general framework to carry qu'F dy-And we denote by
namic atmospheric event reconstruction. The approachiis (h
erarchical) Bayesian, coupling together observed datsaand d, = {c; ;. : (j, k) € Z;}, where,
given dispersion model, along with prior knowledge about
source parameters, model uncertainty, and data accurhey. T
computational framework is implemented in a (Linux) clus-
ter environment and consists of a posterior-sampler intera Further, letd;.; = {d1,...,d:}.
ing with a dispersion model-server that can carry out migtip An atmospheric dispersion computer model is used to re-
dispersion model runs in parallel. late the source parameters to the sensor data. The digpersio

o ={(,k) : 1 < e < 7t }, indexes the new data
available int-th time period.



model yields concentration predictions given various tnputhe probability distribution of the source parameters ¢ond
parameters, including characterization of the emittingrse.  tional on the observed data. In addition, as our setup is dy-
Let namic, we seek a smooth transition from posterior inference
A . ) attimet — 1 to timet; fromm;_1(01.4—1) to 7 (01.1).
Cjk = Cjk(61:) = the model-predicted average con- The source terms are not the only parameters of interest.
centration at locatios; in the time-period; .. We also seek posterior inference on the impact of the release
Ci = Ci(014+) = {Cjx : (ok) € Tt} t < t*, the that is, on the resulting concentration levels,

model-predicted concentrations correspondingd,to
P ponding; 7(C(u, 7)) = p(C(u,7) [dyy), 0 <7 <7, ue D,
The chosen dispersion model is not perfect, but an ap-

proximation to the underlying physical dispersion proesss whereD is our spatial qua|n of Interest. In general, we seek
We therefore define: to have access to the joint posterior

Cjx = C(s;,7T;%) = the true (unknown) average con- mi(Crit, 01:4) = P(Cuits Ot | die).

centration at location; over the time period; . When proceeding from time peridd- 1 to ¢, the atmo-
C:={Cjx: (j,k) € T,}. spheric event reconstruction problem has a natural hierarc
' cal breakdown:
3. ONATMOSPHERIC DISPERSION MODELS Data Modd: A conditional probability distribution describ-

ing the variation in the newly available dat, given
A core component of an atmospheric event reconstruction the true underlying concentrations and past data,
is an efficient use of atmospheric dispersion models. These
models range in complexity, from simple and fast (Gaussian) p(de | Crit, diie—1)- (1)
“puff” models, such as the INPUFF model [1] that we use N . ]
later in Section 6, to more computationally demanding disProcessModel: A probability model describing the varia-
persion models, such as the Lagrangian-based LODI code [2].  tioninthe currentconcentration leve(s,, given model
For the more computationally demanding dispersion models, ~ Predictions and past concentration levels,

it is crucial to m|n|m|ze.the number of_ model-runs needed p(Ci | Crty Cri1) = p(Cy [014, Crier), (2)

for source characterization. We now briefly describe two ap- X R

proaches that can help in this regard. where the second expression follows site = Cy«(61.),
Some dispersion models yield predicted concentrationlev-  ¢t* =1,... t.

els that scale linear with the amount of material being re- .

leased. If this is the case, then, for example for an explol?arameter Model: A prior parameter model,

sive sourc® = {x, T, m}, itis sufficient to carry out aingle p(6;]61.4-1). (3)

model-run at a proposed explosion location and tim€) to

derive the predicted sensor concentratiarig( for various  Before going further, we note that each of these models might

release massesy). have a collection of (hyper) parameters. For example, there
To efficiently take advantage of the above linearity, themight be some parameters that describe the size of the disper

source parameters need to be “mapped” to a spatio-temporgbn model-error (i.e., additional parameters associaiéd

grid before being used by a simulation-based dispersioremnod(2)). Jointly, we have

For example, the proposed location and release time of an ex-

plosive source would be assigned to the closest source gri@{Ce, 01| Cri—1,01:1-1) = p(C¢ | Cri—1,01:4)p(01 | O1:4-1).

point. This introduces the idea of spatio-temporal resoiut rpq joint (prior) distribution of the model parameters daere-

Thus, we extend the notation for the predicted concentratiog, .o ‘b \written as

levels to include a resolution indgk and let
t

C!") = the predicted sensor concentrati@isat a given p(Cr,014) = [ P(Ct, 0i- | Crise 1, 0100 1),
source-resolutiotk. tr=1
where we defin€C1.p = 01, = 0 (an empty set of parame-
4, MODEL DEVELOPMENT ters).

_ _ _ _ Due to the dynamic setup and the hierarchical breakdown
Given sensor data fromtime periods (batchesil.;, our pri- - within each time step, inference flows naturally from time pe
mary goal is to conduct inference on the source parametergod ¢t — 1 to t. Assume at timeg — 1 we have access to the
61.:, via the posterior distribution joint posterior distribution of all parameters of interest

m(01:4) = p(01:¢ | di:t); Ti—1(Crit—1,01:0-1) = P(C1:4—1,01:4—1 | d1p—1).



The dynamic parameter model (3) for the source terms yield2): Rejuvenation

the one-step-ahead predictive distribution as
Ti-1(01:t) = p(0¢ | 01:4—1)T—1(01:4-1).

More generally, jointly we have that, 7P (X)) o pB (dyy | X)) YTp™ (X)), (6)

m-1(Cut, O1:4) = p(Cr, 01| Cr-1,01:0-1) We use MCMC kernels to further 'cool’ and refine the current
X m—1(Crit—1,01:¢-1). sample using (broadly) the following steps:
Then, given (potentially) new data at time stepthe joint
posterior at is given by
7 (Crut, 01:4) X p(dy | Crip, diit—1)me—1(Crit, 01:4).  (4) 2. Select a new source-resolution ind@x using the em-
pirical distribution of the current source parameters.

Let {Xﬁ)t, wgft} be an importance sample from

1. Resample the current sample .

5. POSTERIOR INFERENCE 3. Adapt MCMC kernels using the current sample (e.g.,

the “step-sizes” in Metropolis-Hasting-type of arandom-

For posterior inference we adopt a sequential Monte Carlo
walk kernels) and carry out MCMC proposals.

method. In designing a posterior sampler, we seek robustnes
adaptiveness, and effective use of the (sometimes computa- 4
tional demanding) atmospheric dispersion prediction ctde '
now give a broad description of the sampler’s design.

The sampler consists of three components: (1) Initial-
i_zation; the.generation of thg initial sample, (2) Rejuvena 5. Accept/reject M-H proposals using the n@w in (6),
tion; the refmement and ’cooh_ng’ of t_he current sample, and yielding a MCMC-rejuvenated samp{é(f(f)}

(3) Augmentation; the extension of time-dependent parame- '

ters. The design is inspired by the use of annealing (bridg- 6. Compute the importance weights [8]

ing) methods (as in [3, 4]), the use of auxiliary variables (a

in [5]), the use of MCMC kernels (as in [6, 4]), and by the wil) o TR (X0 7 T (200,
adaptability of population Monte Carlo methods [7]. Many of

these approaches are summarized, generalized, and exten
by Del Moral et al. [8] under the name of “Sequential Monte .
Carlo Samplers”. What is new, and not covered by abov&re”
references, is the implementation of an adaptive annealing
schedule and a constant refinement of the spatial resolutic(r,?,); Augmentation

of the source parameters. 4 _

In what follow, we letX; = {6,, C;}. Let {Xﬁfi, wﬁi} be the current importance sample from (6).
Due to the inherent time delay in what happens at the source
and what is observed at the sensors, any potential new data
d:+1 is mostly informative about the past state of the source.
Given the initial datad; att = 1, we seek to draw an im- We therefore adopt auxiliary particle-filter techniquekifb
portance sample from the 'heated’ and 'coarsened’ posteriextending the current importance sample to time petiad
distribution 1. The only major deviation from the classical auxiliary ap-

(T1,R1) R 1Ty, (Ra proach is the adaptive selection of the annealing tempesatu
M (%) ocp ™0 ([ X)) 1 (Xa), - (B) along the lines of the Initialization step above, except#me-
whereR; indexes the initial (coarse) spatial resolution of theperature change is only applied to the new data.
source parameters (a provided input parameterygnd 1
is the initial annealing temperature. The algorithm used
generate the importance sample is as follows:

Select a new temperatufg, 1 < 7* < T, that results
in an expected MCMC acceptance ratio and ESS just
above given thresholds.

qfﬁis yields an importance samp§& ;" w? ¥} at tempera-
and source-resolutioR*.

(2): Initialization

toPutting it All Together

1. Generaté(ﬁi) ~pBED()i=1,...,N. In short, we carry out the Initialization step followed by imu
0 0 tiple Rejuvenation steps (the number of Rejuvenationseded
2. ComputeL;” oc pFr)(dy | X5”). can be determined by monitoring changes in some population

(8 > 1thatyields importanceweightsStatiStics from one iteration to the next; e.g., changeséam

- and variance). The initial sample is then augmented usiag th
Augmentation step, followed by multiple Rejuvenation step

4 _ The Augmentation and the Rejuvenation steps are then re-
Let {Xgl), wf)} be the resulting importance sample. peated for each new batch of data.

3. Find atemperatu
wl o (LSYY/ T2 with effective sample size (ESS) [9]
just above a give threshold, s&y/2.
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